97 research outputs found

    Development and Modelling of High-Efficiency Computing Structure for Digital Signal Processing

    Full text link
    The paper is devoted to problem of spline approximation. A new method of nodes location for curves and surfaces computer construction by means of B-splines and results of simulink-modeling is presented. The advantages of this paper is that we comprise the basic spline with classical polynomials both on accuracy, as well as degree of paralleling calculations are also shown.Comment: 4 Pages, 5 figures, IEEE International Conference on Multimedia, Signal Processing and Communication Technologies, 2009. IMPACT '0

    High Accuracy Human Activity Monitoring using Neural network

    Full text link
    This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical and empirical facts. The work shows a detailed description of the designing steps for the classification of human body acceleration data. A 4-layer back propagation neural network, with Levenberg-marquardt algorithm for training, showed best performance among the other neural network training algorithms.Comment: 6 pages, 4 figures, 4 Tables, International Conference on Convergence Information Technology, pp. 430-435, 2008 Third International Conference on Convergence and Hybrid Information Technology, 200

    Frequency based Classification of Activities using Accelerometer Data

    Full text link
    This work presents, the classification of user activities such as Rest, Walk and Run, on the basis of frequency component present in the acceleration data in a wireless sensor network environment. As the frequencies of the above mentioned activities differ slightly for different person, so it gives a more accurate result. The algorithm uses just one parameter i.e. the frequency of the body acceleration data of the three axes for classifying the activities in a set of data. The algorithm includes a normalization step and hence there is no need to set a different value of threshold value for magnitude for different test person. The classification is automatic and done on a block by block basis.Comment: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 200

    Frequency Domain Approach for Activity Classification using Accelerometer

    Full text link
    Activity classification was performed using MEMS accelerometer and wireless sensor node for wireless sensor network environment. Three axes MEMS accelerometer measures body's acceleration and transmits measured data with the help of sensor node to base station attached to PC. On the PC, real time accelerometer data is processed for movement classifications. In this paper, Rest, walking and running are the classified activities of the person. Both time and frequency analysis was performed to classify running and walking. The classification of rest and movement is done using Signal magnitude area (SMA). The classification accuracy for rest and movement is 100%. For the classification of walk and Run two parameters i.e. SMA and Median frequency were used. The classification accuracy for walk and running was detected as 81.25% in the experiments performed by the test persons.Comment: 30th Annual International IEEE EMBS Conference, Vancouver, British Columbia, Canada, August 20-24, 200

    Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea

    Get PDF
    Ascochyta blight (AB) is one of the major biotic stresses known to limit the chickpea production worldwide. To dissect the complex mechanisms of AB resistance in chickpea, three approaches, namely, transcriptome, small RNA and degradome sequencing were used. The transcriptome sequencing of 20 samples including two resistant genotypes, two susceptible genotypes and one introgression line under control and stress conditions at two time points (3rd and 7th day post inoculation) identified a total of 6767 differentially expressed genes (DEGs). These DEGs were mainly related to pathogenesis�related proteins, disease resistance genes like NBS�LRR, cell wall biosynthesis and various secondary metabolite synthesis genes. The small RNA sequencing of the samples resulted in the identification of 651 miRNAs which included 478 known and 173 novel miRNAs. A total of 297 miRNAs were differentially expressed between different genotypes, conditions and time points. Using degradome sequencing and in silico approaches, 2131 targets were predicted for 629 miRNAs. The combined analysis of both small RNA and transcriptome datasets identified 12 miRNA�mRNA interaction pairs that exhibited contrasting expression in resistant and susceptible genotypes and also, a subset of genes that might be post�transcriptionally silenced during AB infection. The comprehensive integrated analysis in the study provides better insights into the transcriptome dynamics and regulatory network components associated with AB stress in chickpea and, also offers candidate genes for chickpea improvement

    Co-inoculation of biochar and arbuscular mycorrhizae for growth promotion and nutrient fortification in soybean under drought conditions

    Get PDF
    Drought is significant abiotic stress that affects the development and yield of many crops. The present study is to investigate the effect of arbuscular mycorrhizal fungi (AMF) and biochar on root morphological traits, growth, and physiological traits in soybean under water stress. Impact of AMF and biochar on development and root morphological traits in soybean and AMF spores number and the soil enzymes' activities were studied under drought conditions. After 40 days, plant growth parameters were measured. Drought stress negatively affected soybean growth, root parameters, physiological traits, microbial biomass, and soil enzyme activities. Biochar and AMF individually increase significantly plant growth (plant height, root dry weight, and nodule number), root parameters such as root diameter, root surface area, total root length, root volume, and projected area, total chlorophyll content, and nitrogen content in soybean over to control in water stress. In drought conditions, dual applications of AMF and biochar significantly enhanced shoot and root growth parameters, total chlorophyll, and nitrogen contents in soybean than control. Combined with biochar and AMF positively affects AMF spores number, microbial biomass, and soil enzyme activities in water stress conditions. In drought stress, dual applications of biochar and AMF increase microbial biomass by 28.3%, AMF spores number by 52.0%, alkaline phosphomonoesterase by 45.9%, dehydrogenase by 46.5%, and fluorescein diacetate by 52.2%, activities. The combined application of biochar and AMF enhance growth, root parameters in soybean and soil enzyme activities, and water stress tolerance. Dual applications with biochar and AMF benefit soybean cultivation under water stress conditions.Peer reviewe

    Impact of land-use changes on soil properties and carbon pools in India: A meta-analysis

    Get PDF
    Not AvailableLand-use changes (LUC), primarily due to deforestation and soil disturbance, are one of the major causes of soil quality degradation and greenhouse gas emissions. Effects of LUC on soil physicochemical properties and changes in soil quality and land use management strategies that can effectively restore soil carbon and microbial biomass levels have been reported from all over the world, but the impact analysis of such practices in the Indian context is limited. In this study, over 1,786 paired datasets (for meta-analysis) on land uses (LUs) were collected from Indian literature (1990–2019) to determine the magnitude of the influence of LUC on soil carbon, microbial biomass, and other physical and chemical properties at three soil depths. Meta-analysis results showed that grasslands (36.1%) lost the most soil organic carbon (SOC) compared to native forest lands, followed by plantation lands (35.5%), cultivated lands (31.1%), barren lands (27.3%), and horticulture lands (11.5%). Our findings also revealed that, when compared to forest land, the microbial quotient was lower in other LUs. Due to the depletion of SOC stock, carbon dioxide equivalent (CO2 eq) emissions were significantly higher in all LUs than in forest land. Results also showed that due to the conversion of forest land to cultivated land, total carbon, labile carbon, non-labile carbon, microbial biomass carbon, and SOC stocks were lost by 21%, 25%, 32%, 26%, and 41.2%, respectively. Changes in soil carbon pools and properties were more pronounced in surface (0–15 cm) soils than in subsurface soils (15–30 cm and 30–45 cm). Restoration of the SOC stocks from different LUs ranged from a minimum of 2% (grasslands) to a maximum of 48% (plantation lands). Overall, this study showed that soil carbon pools decreased as LUC transitioned from native forestland to other LUs, and it is suggested that adopting crop-production systems that can reduce CO2 emissions from the intensive LUs such as the ones evaluated here could contribute to improvements in soil quality and mitigation of climate change impacts, particularly under Indian agro-climatic conditions.Not Availabl

    Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients

    Get PDF
    Background: The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. Methods: Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson's disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. Results: We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson's disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. Conclusion: Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated

    Over-expression of OsHOX24 confers enhanced susceptibility to abiotic stresses in transgenic rice via modulating stress-responsive gene expression

    No full text
    Homeobox transcription factors play critical roles in plant development and abiotic stress responses. In the present study, we raised rice transgenics over-expressing stress-responsive OsHOX24 gene (rice homeodomain-leucine zipper I sub-family member) and analyzed their response to various abiotic stresses at different stages of development. At the seed germination stage, rice transgenics over-expressing OsHOX24 exhibited enhanced sensitivity to abiotic stress conditions and abscisic acid as compared to wild-type (WT). OsHOX24 over-expression rice seedlings showed reduced root and shoot growth under salinity and desiccation stress (DS) conditions. Various physiological and phenotypic assays confirmed higher susceptibility of rice transgenics toward abiotic stresses as compared to WT at mature and reproductive stages of rice development too. Global gene expression profiling revealed differential regulation of several genes in the transgenic plants under control and DS conditions. Many of these differentially expressed genes were found to be involved in transcriptional regulatory activities, besides carbohydrate, nucleic acid and lipid metabolic processes and response to abiotic stress and hormones. Taken together, our findings highlighted the role of OsHOX24 in regulation of abiotic stress responses via modulating the expression of stress-responsive genes in rice

    Over-Expression of OsHOX24 Confers Enhanced Susceptibility to Abiotic Stresses in Transgenic Rice via Modulating Stress-Responsive Gene Expression

    No full text
    Homeobox transcription factors play critical roles in plant development and abiotic stress responses. In the present study, we raised rice transgenics over-expressing stress-responsive OsHOX24 gene (rice homeodomain-leucine zipper I sub-family member) and analyzed their response to various abiotic stresses at different stages of development. At the seed germination stage, rice transgenics over-expressing OsHOX24 exhibited enhanced sensitivity to abiotic stress conditions and abscisic acid as compared to wild-type (WT). OsHOX24 over-expression rice seedlings showed reduced root and shoot growth under salinity and desiccation stress (DS) conditions. Various physiological and phenotypic assays confirmed higher susceptibility of rice transgenics toward abiotic stresses as compared to WT at mature and reproductive stages of rice development too. Global gene expression profiling revealed differential regulation of several genes in the transgenic plants under control and DS conditions. Many of these differentially expressed genes were found to be involved in transcriptional regulatory activities, besides carbohydrate, nucleic acid and lipid metabolic processes and response to abiotic stress and hormones. Taken together, our findings highlighted the role of OsHOX24 in regulation of abiotic stress responses via modulating the expression of stress-responsive genes in rice
    • …
    corecore